xtb doc
latest

Quickstart

  • Setup and Installation
  • Quickstart into Production
  • Commandline Usage
  • Geometry Input
  • Detailed Input
  • Compiling from Source

Guides

  • Singlepoint Calculations
  • Properties
  • Geometry Optimization
  • Exploration of the potential energy surface (PES)
  • Implicit Solvation
  • Calculation of Vibrational Frequencies
  • Molecular Dyamics Simulations
  • Meta-Dynamics Simulations
  • Reaction Path Methods
  • Growing String Method
  • Periodic Boundary Conditions
  • External Potentials and Embedding
  • GFN-Force-Field (GFN-FF)
  • C API to the extended tight binding program
  • Python Integration for the xtb API

Submodules

  • Info Submodule
  • Thermo Submodule
  • Topology Submodule

CREST

  • Introduction to CREST
  • CREST Versions and Changelog
  • Basic Usage
  • Example applications

ENSO

  • Introduction to ENSO
  • Setting up ENSO
  • Usage
  • ANMR
  • Spectra Plotting

Misc

  • Versions and Changelog
  • xTB related Publications
    • Methods
    • Applications
  • License
  • Need Help
xtb doc
  • Docs »
  • xTB related Publications
  • Edit on GitHub

xTB related Publications¶

Contents

  • xTB related Publications
    • Methods
    • Applications

Methods¶

GFN1-xTB: Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parameterized for All spd-Block Elements (Z = 1-86). J. Chem. Theory Comput. 2017, 13 (5), 1989-2009 DOI: 10.1021/acs.jctc.7b00118

GFN2-xTB: Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions J. Chem. Theory Comput. 2019, 15 (3), 1652–1671 DOI: 10.1021/acs.jctc.8b01176

GFN-FF: Spicher, S.; Grimme, S. Robust atomistic modeling of materials, organometallic and biochemical systems Angew. Chem. Int. Ed. 2020, accepted article, DOI: 10.1002/anie.202004239

DFT-D4: Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction J. Chem. Phys. 2019, 150, 154122 DOI: 10.1063/1.5090222

sTDA-xTB: Grimme, S.; Bannwarth, C. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB) J. Chem. Phys. 2016, 145, 054103 DOI: 10.1063/1.4959605

Applications¶

CREST: Pracht, P.; Bohle, F.; Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods, Phys. Chem. Chem. Phys., 2020, 22, 7169-7192. DOI: 10.1039/C9CP06869D Publication Date (Web): February 12, 2020

Meta-Dynamics Simulations: Grimme, S. Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations, J. Chem. Theory Comput., 2019, 155, 2847-2862. DOI: 10.1021/acs.jctc.9b00143 Publication Date (Web): April 3, 2019

Thermodynamics Spicher, S.; Grimme, S. Efficient Computation of Free Energy Contributions for Association Reactions of Large Molecules J. Phys. Chem. Lett. 2020, 11 (16), 6606–6611 DOI: 10.1021/acs.jpclett.0c011930

Conformational Energies of Transition Metal Complexes (TMCONF40): Bursch, M.; Pracht, P.; Hansen, A.; Grimme, S. Theoretical study on conformational energies of transition metal complexes Phys. Chem. Chem. Phys. 2021, 23, 287-299 DOI: 10.1039/D0CP04696

Small Molecule Binding in Metal Organic Polyhedra Spicher, S.; Bursch, M.; Grimme, S. Efficient Calculation of Small Molecule Binding in Metal–Organic Frameworks and Porous Organic Cages J. Phys. Chem. C 2020, 124 (50), 27529-27541 DOI: 10.1021/acs.jpcc.0c08617

Distance Distributions in Biomacromolecules Spicher, S.; Abdullin, D.; Grimme, S.; Schiemann, O. Modeling of spin–spin distance distributions for nitroxide labeled biomacromolecules Phys. Chem. Chem. Phys 2020, 22, 24282-24290 DOI: 10.1039/DOCP04920D

Calculation of Redoxpotentials: Neugebauer, H.; Bohle, F.; Bursch, M.; Hansen, A.; Grimme, S. Benchmark Study of Electrochemical Redox Potentials Calculated with Semiempirical and DFT Methods J. Phys. Chem. A 2020, 124 (35), 7166-7176 DOI: 10.1021/acs.jpca.0c05052

Protonation Site Determination: Pracht, P.; Bauer, C.; Grimme, S. Automated and efficient quantum chemical determination and energetic ranking of molecular protonation sites J. Comput. Chem. 2017, 38 (30), 2618-2631 DOI: 10.1002/jcc.24922

NMR Spectrum Simulation: Grimme, S.; Bannwarth, C.; Dohm, S.; Hansen, A.; Pisarek, J.; Pracht, P.; Seibert, J.; Neese, F. Fully Automated Quantum Chemistry Based Computation of Spin–Spin Coupled Nuclear Magnetic Resonance Spectra Angew. Chem. Int. Ed. 2017, 56 (20), 12485–12491 DOI: 10.1002/anie.201708266

Geometry Optimization of Transition-Metal Complexes: Bursch, M.; Neugebauer, H.; Grimme, S. Structure Optimisation of Large Transition‐Metal Complexes with Extended Tight‐Binding Methods, Angew. Chem. Int. Ed. 2019, 58, 11078. DOI: 10.1002/anie.201904021

Geometry Optimization of Lanthanoid Complexes: Bursch, M.; Hansen, A.; Grimme, S. Fast and Reasonable Geometry Optimization of Lanthanoid Complexes with an Extended Tight Binding Quantum Chemical Method Inorg. Chem. 2017, 56 (20), 12485–12491 DOI: 10.1021/acs.inorgchem.7b01950

Transition State Localization in Organometallic Complexes: Dohm, S.; Bursch, M.; Hansen, A.; Grimme, S. Semiautomated Transition State Localization for Organometallic Complexes with Semiempirical Quantum Chemical Methods, J. Chem. Theory Comput., 2020, 16, 2002–2012 DOI: 10.1021/acs.jctc.9b01266

Electron Ionization Mass Spectra: Koopman, J.; Grimme, S. Calculation of Electron Ionization Mass Spectra with Semiempirical GFNn-xTB Methods, ACS Omega 2019, 4 (12), 15120-15133. DOI: 10.1021/acsomega.9b02011

ECD spectra calculation for entire proteins: Seibert, J.; Bannwarth, C.; Grimme, S. Biomolecular structure information from high-speed quantum mechanical electronic spectra calculation. J. Am. Chem. Soc. 2017, jacs.7b05833 DOI: 10.1021/jacs.7b05833

Extension of the sTDA-xTB parameter set: Seibert, J., Pisarek, J., Schmitz, S., Bannwarth, C., Grimme, S. Extension of the element parameter set for ultra-fast excitation spectra calculation (sTDA-xTB) Mol. Phys. 2018, 0(0), 1–13 DOI: 10.1080/00268976.2018.1510141

Nonlinear optical properties with sTD-DFT-xTB: De Wergifosse, M., Grimme, S. Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of the first hyperpolarizability J. Chem. Phys 2018, 149(2), 024108. DOI:10.1063/1.5037665

Excited state absorption spectra with sTD-DFT-xTB: De Wergifosse, M., Grimme, S. Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra J. Chem. Phys. 2019 , 150(9), 094112 DOI: 10.1063/1.5080199

Supramolecular Chemistry with GFN2-xTB: Bohle, F. Grimme, S. Efficient structural and energetic screening of fullerene encapsulation in a large supramolecular double decker macrocycle J. Serb. Chem. Soc. 2019, 84(8), 837-844 DOI:10.2298/JSC190701079B

Geometry Optimization of (Metallo-) Proteins: Schmitz, S., Seibert, J., Ostermeir, K., Hansen, A., Göller, A. H., Grimme, S. Quantum Chemical Calculation of Molecular and Periodic Peptide and Protein Structures J. Phys. Chem. B 2020, 124, 3636-3646 DOI: 10.1021/acs.jpcb.0c00549

Next Previous

© Copyright 2019, Grimme group Revision d83b72b1.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.